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Abstract: The Lewis acid catalyzed
bromination of aromatic side chains
was achieved efficiently by using 1,3-di-
bromo-5,5-dimethylhydantoin

(DBDMH) as the bromination reagent
under mild conditions. Zirconium(IV)
chloride showed the highest catalytic

It was revealed that the present Lewis
acid catalysis proceeds by the radical-
generation pathway. In contrast,
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Brgnsted acids promoted aromatic-ring
bromination without any benzylic bro-
mination. Monobromination of tetra-
methylsilane was also demonstrated
with  zirconium(IV) chloride and
DBDMH to provide the desired pro-
duct in good yield.

activity for this benzylic bromination.

Introduction

The bromination of aromatic compounds is a highly useful
transformation because the brominated products are widely
used in the fields of synthetic organic chemistry and materi-
als science. In particular, recent progress in transition-metal-
catalyzed cross-coupling reactions has extended the utility
of bromoarenes and benzylic bromides. Although N-bromo-
imides are widely used for both benzylic bromination and
electrophilic aromatic-ring bromination, harsh reaction con-
ditions or electron-rich substrates are usually required.?
For example, Wohl-Ziegler bromination, which is one of the
most popular methods of obtaining o-brominated alkyl
arenes, is usually performed with N-bromosuccinimide
(NBS) in the presence of a radical initiator at high tempera-
ture. Surprisingly little attention has been given to investi-
gating this reaction at lower temperatures.'! Recently, we re-
ported that zirconium(IV) chloride catalyzes aromatic-ring
bromination quite efficiently with NBS as an electrophilic
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bromination reagent.'! In that paper, we also mentioned
that the ZrCl/NBS system promotes Wohl-Ziegler type
benzylic bromination of toluene derivatives without bromi-
nation on the aromatic ring. Herein, we report an even
more efficient Lewis acid catalyzed benzylic bromination
under mild conditions, in contrast to Brgnsted acid catalyzed
aromatic-ring bromination [Eq. (1)].

N\
B
Me Me  [Br] r
= Brgnsted acid ') Lewis acid
Br— | (1)
X Ring Side—chain
bromination bromination

Results and Discussion

In the course of our previous studies on Lewis acid cata-
lyzed electrophilic halogenation, we found that zirco-
nium(IV) chloride catalyzes the benzylic bromination of tol-
uene with NBS at room temperature to provide benzylbro-
mide.' Further optimization of the reaction conditions re-
vealed that the use of 1,3-dibromo-5,5-dimethylhydantoin
(DBDMH) as the bromination reagent increased the reac-
tion rate dramatically to afford benzylbromide exclusively
(Table 1, entries 1-3). Some other metal halides also cata-
lyzed the benzylic bromination selectively (Table 1, en-
tries 4-8). In marked contrast to Lewis acid catalysis, the
use of Brgnsted acids promoted the ring bromination of tol-
uene to provide a mixture of o- and p-bromotoluene in ex-
cellent yield without the generation of benzylbromide. The
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Table 1. Acid-catalyzed bromination of toluene.!”!

Table 2. Effect of light for benzylic bromination of ethylbenzene.

B M
Me 0 Me Me Br Et r-Me
%/4 Acid Br ZrCl, (10 mol%)
+ N-Bf —mM8MM + DBDMH (0.5 equiv) —M8M8M8M8M8 ™M
Br/N\( CH,Cl,, RT, 2 h CH,Cl,, 2 h
0 Br 5 6
1 DBDMH (0.5 equiv) 2 3 4 Conditions T[°C) Yield [%]
Entry Acid ([mol %]) Yield [%]™ Ambient light RT 98
2 3 4 Dark RT <5
1 none 0 0 0 émble?t light 7;2 6<3 5
24 ZrCl, (10) 0 0 39 reen faser -
3 ZrCl, (10) 0 0 86
4 Zr(OiPr), H,0 (10) 0 0 32 . o
5 TiCl, (10) 2 2 7 results clearly show that this reaction involves the genera-
6 AlCI; (10) 5 4 70 tion of radical species.
7 TELNALCL (10) 1 1 76 Next, the general scope of the reaction was probed by ap-
8 Cy,BC (10) 0 0 i lication to a series of alkylated aromatic compounds with
9 TOH (50) 49 45 o  prcatis , v poun
10 TE,NH (50) 48 46 0 zirconium(IV) chloride or trifluoromethanesulfonimide. The
1 (C,F,SO,),NH (50) 44 42 0 results are presented in Table 3. In all examples except for

[a] Reactions were carried out in dichloromethane at room temperature
for 2 h with 0.5 equivalent of DBDMH under ambient light unless other-
wise noted. [b] Yields determined by GC analysis. [d] 1.0 equivalent of
NBS was used instead of DBDMH. Cy=cyclohexyl, Tf=trifluorometha-
nesulfonyl.

use of trifluoromethanesulfonic acid and perfluorinated al-
kanesulfonimides showed almost the same reactivity and se-
lectivity (Table 1, entries 9-11).

We assume that this sharp contrast between Lewis and
Brgnsted acid catalysis can be explained by differences in
the reaction pathways. Thus, Lewis acids would assist the
generation of benzyl radical® from DBDMH to promote a
Wohl-Ziegler benzylic bromination, whereas Brgnsted acids
would activate DBDMH by protonation! to accelerate Frie-
del-Crafts type electrophilic ring bromination. To ensure a
radical pathway in the course of Lewis acid catalysis, the
effect of light was investigated (Table 2). Zirconium(IV)
chloride catalyzed the bromination of ethylbenzene under
ambient light to afford (1-bromomethyl)benzene (6) in 98 %
yield (Table 2, entry 1), but the reaction did not proceed in
the dark (Table 2, entry2). Furthermore, irradiation by
green laser® dramatically accelerated the reaction to afford
the desired product even at —78°C (Table 2, entry 4). These
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reactions with an electron-rich substrate, Lewis acid catalysis
produced benzylic bromination, whereas Brgnsted acid cat-
alysis produced ring bromination specifically. In contrast,
when the reactions were carried out with electron-rich aro-
matic substrates, Lewis acid catalysis afforded ring-bromi-
nated products as well (Table3, entries 6-9). Benzylic
chlorination of ethylbenzene was performed by using 1,3-di-
chloro-5,5-dimethylhydantoin (DCDMH) as a chlorination
reagent to afford (1-chloroethyl)benzene (7) in good yield
(Table 3, entry 2). Substrate 16, which contains pinacolbo-
rate, also underwent benzylic bromination by Lewis acid
catalysis to provide the desired benzyl bromide derivative
17 (Table 3, entry 10), whereas the use of Brgnsted acid
gave a complicated mixture.

Finally, our method was applied to the o bromination of
silane.! The treatment of tetramethylsilane (18) with
DBDMH in the presence of 10 mol% of zirconium(IV)
chloride successfully afforded bromomethyltrimethylsilane
(19) in 70 % yield (Scheme 1).

Me, Me ZrCly (10 mol%)

DBDMH + Si Si.
Me Me CH,Cl,, RT, 36 h Me Me

18 19
2 equiv based on [Br] 70% based on [Br]

Me, _/—Br

Scheme 1. Lewis acid catalyzed radical bromination of tetramethylsilane.

Conclusions

We have disclosed the highly effective Lewis acid catalyzed
side-chain bromination of aromatic compounds with
DBDMH as a bromination reagent. In particular, the use of
zirconium(I'V) chloride catalyst showed excellent catalytic
activity to provide various benzyl bromide derivatives. In
contrast to Lewis acid catalysis, Brgnsted acid promoted ar-
omatic-ring bromination without any benzylic bromination.
Monobromination of tetramethylsilane was also demonstrat-
ed with zirconium(IV) chloride and DBDMH. The present
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Table 3. Acid-catalyzed halogenation of aromatic compounds.”!
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chased from Aldrich or Strem and

Entry Substrate Acid ([mol %]) t [h]

Product

also used without further purification.

Yield [%
%] Zirconium(IV) chloride, aluminum-
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(IIT) chloride, and bistrifluorometha-
nesulfonimide were handled in a
glove box. All products were charac-
terized by the comparison of their
"H NMR spectra with those of com-
mercially available authentic samples.
The green laser pointer (wavelength
532 nm, max output power <5mW)
used in Table 2 was purchased from
Leadlight Technology, Inc.
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Syntheses

\

Typical procedure for Tables 1 and 3:
A solution of toluene (1; 0.5 mmol)
and DBDMH (0.25 mmol) in di-
chloromethane (2 mL) was added to
a suspension of zirconium(IV) chlo-
ride (0.05 mmol) in dichloromethane
(2mL) at room temperature. The
mixture was stirred for 2h at room
temperature under ambient light. The
reaction was quenched with saturated
aqueous NaHCO;, and the mixture
was extracted with diethyl ether. The
organic layer was subjected to GC
analysis with 1,2-dichlorobenzene as
an internal standard. The yield of
benzylbromide (4) was determined to
be 86%.

17: '"HNMR (500 MHz, CDCly): 6=
7.82 (d, J=7.0 Hz, 1H), 7.42-7.37 (m,
2H), 7.30-7.26 (m, 1H), 4.92 (s, 2H),
1.37ppm (s, 12H); “CNMR
(125 MHz, CDCLy): 0=144.2, 1364,
131.3, 1304, 127.6, 83.8, 339,
24.8 ppm.
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[a] Reactions were carried out in dichloromethane at room temperature with 0.5 equivalent of DBDMH
unless otherwise noted. [b] Yield determined by 'H NMR spectroscopy. [c] 0.5 equivalent of DCDMH was

used instead of DBDMH. [d] Yield of isolated product.

bromination system could thus be one of the most powerful
methods for Wohl-Ziegler type radical bromination under
mild reaction conditions, and it could be a more atom-eco-
nomical process than that with NBS.

Experimental Section

General

All reactions were carried out in flame-dried glassware under argon at-
mosphere and stirred by magnetic stirrer bars. Flash column chromatog-
raphy for the isolation of products was performed according to the
method of Still with silica gel 60 (230-400 mesh) supplied by E. Merck.
All reactions were carried out with anhydrous dichloromethane, which
was dried with an M BRAUN solvent-purification system (A2 Alumina).
'H and ®C NMR spectra were recorded on a Bruker Avance 500 spec-
trometer (500 MHz for 'H, 125 MHz for *C). Chemical shifts (9) are re-
ported in ppm (tetramethylsilane: ¢ =0.00 ppm for 'H; residual chloro-
form: 6="77.0 ppm for °C).

Materials

All starting compounds were purchased from Aldrich or Boron Molecu-
lar, Inc. and used without further purification. All acid catalysts were pur-

Chem. Asian J. 2008, 3, 1581 -1584

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Reaction procedure for Table 2: Re-
actions were carried out with ethyl-
benzene (5; 0.5 mmol) as substrate by
a procedure similar to that used for
Table 1. Yields of (1-bromoethyl)ben-
zene (6) were determined by 'H NMR spectroscopic analysis of the
crude mixture. The reaction vessel was covered with aluminum foil when
the reaction was carried out in the dark. A laser pointer was placed on
the top of the reaction vessel, and the entire piece of equipment was cov-
ered with aluminum foil when the reaction was carried out under irradia-
tion with green laser.

Reaction procedure for Scheme 1: Tetramethylsilane (18; 4 mmol) and
DBDMH (1 mmol) were added to a suspension of zirconium(IV) chlo-
ride (0.1 mmol) in dichloromethane (4 mL) at room temperature. The
mixture was stirred for 36 h at room temperature under ambient light.
The vyield of bromomethyltrimethylsilane (19) was determined by
'HNMR spectroscopic analysis of the reaction mixture to be 70%
(1.4 mmol, based on ', DBDMH). 'H NMR (500 MHz, CDCl;): 6 =2.46
(s, 2H), 0.14ppm (s, 9H); "CNMR (125MHz, CDCLy): 6=18.2,
—2.5 ppm.
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